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Abstract

Text generation is a popular task in the natural
language processing area. However, it remains
challenging for generative models to generate
coherent texts. These years, generative adver-
sarial network (GAN) has shown an amazing
performance in image generation and thus re-
cently, many people began to apply GAN for
text generation. In this work, we propose a
GAN-like framwork with hierarchical genera-
tor and encoder to generate lyrics given a spec-
ified style and topic pair.

1 Introduction

Text generation is one of the most popular task in the
natural language processing area. Recently, there are a
large amount of works [(Zhang et al., 2017), (Chen et
al., 2018), (Ahamad, 2018), (Wang et al., 2018), (Zhang
and LeCun, 2018), (Donahue and Rumshisky, 2018)] pro-
posed to generate text using generative adversarial net-
works (GAN) (Goodfellow et al., 2014). However, most
current works only focus on generating one or several
sentences, not even a long paragraph, let alone a passage.

Lyrics, as one type of text, has some its own character-
istics. Lyrics usually have rhythms, are mostly not very
short, and have some repetition patterns. These character-
istics make generating lyrics much harder than generating
normal texts.

Most current works about lyric generation coming
with many conditions, such as given a piece of melody
(Watanabe et al., 2018), or only generating a specific type
of lyric (Malmi et al., 2016). However, we do not see any
prior work about generating lyrics automatically given
a style and a topic. Thus we are planning to focus on
this novel problem. We are interested to see whether our
proposed model can learn different features for different

styles, distinguish between various topics, and generate
real-looking lyrics.

Our contributions are as follows.

• We build a GAN-like neural network model to gen-
erate lyric given a style and a topic.

• We propose a novel hierarchical structure for both
lyric generation and encoding.

• We propose two different evaluation methods to
quantitatively measure the authenticity of the gen-
erated lyric.

2 Related Work
Lyric is a type of text, and we are going to use the idea
of GAN to do the generation. In this section, we discuss
the related works about text generation using GAN and
current works on lyric generation.

Traditional text generation uses variational auto-
encoder(VAE). Recently more work begins to apply ad-
versarial learning in text generation. Many of them ap-
plied a sequence-to-sequence model as a generator and
another language model as a discriminator [(Zhang et
al., 2017),(Chen et al., 2018)]. Their loss functions are
the traditional GAN loss, WGAN loss, or WGAN-GP
loss. In 2017, (Yu et al., 2017) first applied reinforce-
ment learning in GAN. They proposed to train the GAN
model using policy gradient. Based on their approach,
more recent GANs begin to apply reinforcement learning
as their loss functions. (Wang et al., 2018) combines the
VAE structure with GAN. However, even though there
are many trails on adversarial learning in text generation,
the performances weren’t as satisfactory as their perfor-
mances in image generation. One big problem is that the
generated texts are not grammatically correct. Besides,
the syntactic and semantic features are not coherent ei-
ther. These challenges still need to be solved.

Lyric generation is a specific part of text generation.
Many paper focused on generating a lyric for specific
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Figure 1: GAN model illustration.

author (Barbieri et al., 2012) or specific style like rap
(Malmi et al., 2016). For these specific tasks, they
focus on features like rhyme patterns and the connec-
tion between contexts. Traditional approach uses hidden
markov model (HMM) to represent trasitions betwenn
topics (Watanabe et al., 2014). The HMM model can cap-
ture the inter-chorus and inter-line relations successfully.
More recent methods used RNN to encode the sequences
(Watanabe et al., 2018), (Malmi et al., 2016). Another di-
rection of generating the lyrics is generating lyrics based
on input melodies(Watanabe et al., 2018). The structure
is a language model conditioned on a featurized melody.

3 Task Description
In this work, we focus on generating a song lyric given a
style and a topic. Specifying a lyric style, such as rock,
country, or jazz, with a content topic, we want to build
a GAN-like neural network model to generate a lyric for
us automatically. Given the style and topic of a lyric, the
generated lyric should look real, have a style same as the
given one, and contain the meaning relevant to the topic.

4 Approach
We use a generative adversarial network (GAN) model
to do the lyric generation. GAN, by its name, contains
two network modules: one generative net and an adver-
sarial net. The generative net tries to generate results that
look like real data, while the adversarial net is going to
tell whether a data is generated or not. These two com-
ponents are trained iteratively.

Our model is shown in Fig. 1. It contains three compo-
nents, a generator, an encoder, and a discriminator. The
generator corresponds to the generative net in the GAN
framework, while the encoder and discriminator together
correspond to the adversarial net. We use the WGAN
with gradient penalty (Gulrajani et al., 2017) framework
for training. The generator produces lyrics conditioned
on the given style and the content topic. The encoder
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Figure 2: Generator illustration.

gives the embedding of a lyric. The discriminator is
trained to help the generated lyrics look like real ones.

4.1 Generator

The structure of the generator is shown in Fig. 2. It is hi-
erarchical, and contains two GRU RNN decoders, a line-
level decoder and a word-level decoder.

The input to the line-level GRU decoder is a normal-
ized random vector drawn from a standard normal distri-
bution, concatenated with the given style and topic. The
initial hidden state of line-level GRU is a zero vector. For
each step i of the line-level decoder, we try to learn two
vectors: one vector ei indicating whether the current line
generated is the last line or not, and the other vector ti
deciding the topic for that line to be generated, which is
treated as the initial hidden state of the word-level de-
coder. The first vector is a binomial distribution over the
states {CONTINUE, END}.

The input to the word-level decoder is the word gener-
ated in the previous time step concatenated with the given
style and topic. For the first time step, we use the start-of-
sentence (SOS) tag. For each time step of the word-level
decoder, we want it to learn the next word given previous
word. We add a linear embedding layer right before the
GRU input to reduce the vector dimension. A linear layer
with softmax operation is applied on GRU output, which
makes the output represent the probability of generating
each word over the vocabulary. The end of sentence is
marked using an end-of-sentence (EOS) tag.
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Figure 3: Encoder illustration.

4.2 Encoder

The encoder also has a hierarchical structure, which is il-
lustrated in Fig. 3. Similar to the generator, it contains
two GRU RNNs: a word-level encoder and a line-level
encoder. For every word token in a line, we concatenate
it with the given style and topic as the input to the word-
level encoder. We also add a linear embedding layer right
before the GRU input. The final hidden state of the word-
level encoder is treated as the embedding of that line.
Then we feed the line embedding concatenated with style
and topic into the line-level encoder. Then the final hid-
den state of line-level encoder is the lyric embedding.

Using a hierarchical structure has many advantages.
First, it not only considers the relations among words, but
also considers the relations among lines. Besides, using
a single-level RNN as an encoder or a decoder empiri-
cally performs bad for long sequences. In the hierarchi-
cal structure, each recurrent unit only processes a small
number of tokens, which will make it perform better.

4.3 Discriminator

Like other WGAN-like framworks [(Arjovsky et al.,
2017), (Hsu et al., 2017)] the discriminator measures the
distance between the generated data distribution and real
data distribution. Given a real lyric or a generated lyric,
we first use the encoder to obtain the lyric embedding.
The lyric embedding is then fed to the discriminator. The
discriminator is implemented as a two-layer MLP with
leaky ReLU activation.

4.4 Training
To train our model, we employ a two-stage strategy. First
we combine the encoder and the generator as an auto-
encoder, using the real lyrics to train the auto-encoder.
This is going to give the generator and the encoder some
language prior. Then we put the pre-trained generator
and the encoder, together with the discriminator, into the
GAN training procedure.

4.4.1 Pre-training
In the GAN training procedure, the input to the gen-

erator is a random vector. Thus without pre-training, it
may be hard to generate a well-organized lyric. To avoid
this problem, we combine the encoder and the generator
as an auto-encoder, and use the real lyrics to train it. We
first use the encoder to encode the lyric, and then use the
generator to decode the lyric back. The input to the line-
level decoder at every time step is the lyric embedding.
Here involve two losses, for a lyric with m lines and ni
words on every line. One loss is on the word level, that
is, a cross-entropy loss between the generated word ŵij

and the ground-truth word wij .

Lw =
1

m

m∑
i=1

1

ni

ni∑
j=1

cross entropy(ŵij , wij) (1)

The other loss is on the line level, which measures
whether the generator produces the correct number of
lines. Cross-entropy loss is applied between the predicted
{CONTINUE, END} ŝi and the ground-truth state si.

Ls =
1

m

m∑
i=1

cross entropy(ŝi, si) (2)

The final loss for the pre-training is a weighted sum of
Eq. 1 and Eq. 2.

Lauto = Lc + λsLs (3)

4.4.2 Adversarial training
After the aforementioned pre-training process, we put

our model into the GAN training procedure. Compared to
the conventional GAN setting, our generator corresponds
to the generative net; while our encoder and discrimina-
tor together correspond to the discriminative net. In ev-
ery iteration of the adversarial training, we first update
the parameters of the encoder and the discriminator, then
update the parameters of the generator.

We input normalized random noise drawn from a stan-
dard normal distribution to the generator. Then we con-
catenate the output from the softmax layer to get a “gen-
erated” lyric, where each token is the probability of words
over the dictionary. After we generate a lyric ẑ, we feed it
to the encoder and the discriminator to get a value D(ẑ).



We also feed a corresponding real lyric z to the encoder
and the discriminator to get a value D(z). We apply the
WGAN with gradient penalty (WGAN-GP) (Gulrajani et
al., 2017) framework to update the network modules. The
reason why we use WGAN-GP rather than original GAN
is that WGAN-GP framework is empirically more stable
and easier to train.

Given fixed generator, the loss to train the encoder and
discriminator is as follows, where E(·) is taking the ex-
pectation and α and λgp are tune-able hyper-parameters.

GP = E[(|∇D(αz − (1− αẑ))| − 1)2] (4)
Lwd = −E[D(z)] + E[D(ẑ)] (5)
Ld = Lwd + λgpGP (6)

Given fixed encoder and discriminator, the loss to train
the generator is as follows, where E(·) is taking the ex-
pectation.

Lg = −E[D(ẑ)] (7)

5 Dataset

The dataset we use is the 380000-lyrics-from-metrolyrics
dataset available on Kaggle1. This dataset contains
around 380,000 lyrics with many different topics and
styles. The styles of lyrics covered by this dataset are
pop, hip-hop, rock, metal, country, jazz, electronic, folk,
R&B, indie, and other.

5.1 Data Cleaning

In this work, we only use English lyrics with styles in-
cluding hip-hop, metal, and country. These three styles
of lyric are quite distinguishable and only using English
lyrics constrains our vocabulary within English words.
We remove all words in brackets or parenthesises and
all punctuations. Besides, we replace some abbrevi-
ation. For example, we change “don’t” to “do not”.
We build a dictionary of 9746 word tokens, including
“start-of-sentence” (SOS), “end-of-sentence” (EOS, and
“unknown-word” (UNK) tags. For the words not in the
dictionary, we replace them with UNK tags. We remove
lyrics where more than 50% of the word tokens are UNK
tags. We also remove lyrics which is less than 4 lines, and
keep the maximum number of words in each line as 32.

After the above data cleaning procedure, we obtain a
filtered lyric dataset. The data distribution of the filtered
dataset is shown in Tab. 1. We randomly split the filtered
dataset into training, validation, and testing splits with a
proportion of 8:1:1.

1https://www.kaggle.com/gyani95/
380000-lyrics-from-metrolyrics

Genre Number of Instances
Hip-Hop 12220

Metal 13776
Country 13748

Table 1: Data Distribution of the Filtered Dataset

5.2 Test Sets

We built three test sets to cover three test cases. Each
contains 150 style and topic pairs, 50 for every style (i.e.,
hip-hop, metal, and country).
Test Set 1. This set contains the style and topic pairs
which have been seen during training. This set is ran-
domly selected form the training split.
Test Set 2. This set contains the topics that have not been
seen during training and validation. This set is a subset
of the testing split.
Test Set 3. This set contains the topics that have been
seen during training, but the style and topic pairs have
not been seen when training and validation. This set is
also a subset of the testing split.

6 Experiments

6.1 Models Compared

We compare the lyrics generated from 4 different models
with real lyrics. We refer these models as follows.
Random Weights. This model is the generator with ran-
domly initialized weights.
GAN Scratch. This model is trained using the GAN
training procedure (Sec. 4.4.2) from scratch (with ran-
domly initialized weights).
Pre-train Only. This is the generator with the weights
pretrained on the auto-encoder task (Sec. 4.4.1).
GAN Pre-train. This model is trained using the GAN
training procedure (Sec. 4.4.2) from the pretrained model
(Pre-train Only).

6.2 Evaluation Methods

We propose two different evaluation metrics to quantita-
tively measure our lyric generation models, that is, a dis-
criminator approach and a classification measurement.
Discriminator Approach. The discriminator output
(a.k.a. discriminator score), −Lwd from Eq. 5, measures
the distance between the generated data distribution and
the real data distribution. We use this discriminator score
to measure the “realness” of our generated lyric with our
trained discriminator. A real lyric should have a discrim-
inator score of 0, and the smaller the discriminator score,
the more real of the generated lyric.
Classification Measurement. We trained another clas-
sification network to classify the style of the generated
lyric. The classifier is trained on the training data, i.e.,



real lyrics. This measurement is to see whether our gen-
erated lyric actually has the given style. We report the
classification accuracy for the measurement.

6.3 Implementation Details
We use a single-direction single-layer GRU RNN to im-
plement the line-level decoder, word-level decoder, word-
level encoder, and line-level encoder. We set the hidden
state dimension to 128 for all of them, and set the embed-
ding vector dimension to 128 for the word-level decoder
and word-level encoder.

We feed the output of the line-level decoder to two dif-
ferent network structures. One is a linear layer to produce
the binomial distribution over the {CONTINUE, END}
states; the other is a two-layer MLP with ReLU activita-
tion to produce the initial hidden state for the word-level
decoding.

We use one-hot encoding to represent words;
thus word encoding has dimension 9746. For
topic encoding, we use the pre-trained 300-dimension
word2vec (Mikolov et al., 2013) vectors to represent ev-
ery word in the topic, and then calculate the mean vector
over the words to represent the topic, which has dimen-
sion 300. We also use one-hot encoding to represent the
lyric style.

When training the auto-encoder, we use learning rate
0.0001 with the Adam optimizer (Kingma and Ba, 2014)
and a batch size of 30. We set the λs in Eq. 3 to 0.1 and
train the auto-encoder for 20 epochs.

For the GAN training, we use a batch size of 25 with
the Adam optimizer (Kingma and Ba, 2014). The learn-
ing rate used for all the network components in the GAN
Scratch model is 0.0001. For the GAN Pre-train model,
we set the learning rate to 0.000095 for the pretrained
generator and encoder and 0.0001 for the discriminator.
We set the α in Eq. 4 to 1 and the λgp in Eq. 6 to 10.

We also trained a classification network to classify the
style of a generated lyric. The classification network is a
combination of the encoder (without style and topic con-
ditions) and a two-layer MLP with ReLU activation. For
training, we use the Adam optimizer (Kingma and Ba,
2014) with learning rate 0.0001 and batch size of 150.

For all the training, we pick the number of epochs used
for testing based on validation set performance.

6.4 Quantitive Results
The discriminator score is shown in Tab. 2. We can see
that the Pre-trained Only model achieves the best perfor-
mance in terms of the discriminator score. However, we
can not handle the training for the GAN Pre-train model
well.

The classification accuracy is displayed in Tab. 3. It is
quite sad that all the 4 models do not perform well on this
metric.

Model Test Set 1 Test Set 2 Test Set 3
Random Weights 5.30 5.27 5.31

GAN Scratch 5.15 5.10 5.09
Pre-train Only 1.95 2.08 1.72
GAN Pre-train 5.31 5.31 5.30

Real Lyric 0 0 0

Table 2: Discriminator score (the lower the better).

Model Test Set 1 Test Set 2 Test Set 3
Random Weights 0.33 0.33 0.33

GAN Scratch 0.34 0.33 0.33
Pre-train Only 0.33 0.33 0.33
GAN Pre-train 0.35 0.35 0.35

Real Lyric 0.86 0.81 0.67

Table 3: Classification accuracy (the higher the better).

6.5 Qualitative Results
Tab. 4 and Tab. 5 show the lyrics generated by the Pre-
trained Only model for the topics “Voyage” and “My
Love” respectively with different styles. The topic “Voy-
age” does not exist in the training data while “My Love”
exists. We can see that the model can generate lyrics re-
lated to the given topic (in terms of some words) and can
generate different lyrics for different styles.

7 Discussion
7.1 Lessons Learned and Project Evaluation
In this project, we implemented the hierarchical structure
and the adversarial learning framework all by ourselves.
The training is hard due to the complicated framework
and the large dataset, it takes us around 3 hours to train
one epoch for the GAN training process. Our models are
not well-trained, especially for the GAN Pre-train model.

Another lesson we learned is the difficulty of text gen-
eration. Unlike image generation, text generation must
follow grammar rules and must contain coherent seman-
tics. These two characteristics make text generation
harder. In our project, we try to distinguish different
styles just based on the lyrics. However, even for hu-
man beings, it is difficult to distinguish the styles by only
looking at the lyrics. In this way, we failed to generate the
lyric with the specified style. More sophisticated methods
should be applied to solve this problem.

As for the evaluation of our project, we believe that
our project is partially successful. On the one hand, we
can see that the hierarchical structure works in generating
lyrics. In the qualitative results, we can find out that there
are somewhat “reasonable” generated lyrics. Besides, the
GAN training procedure also increased the style classifi-
cation accuracy a bit even though it is only trained for 10
epochs.



Style Voyage
Hip-Hop i finally know without anything if your low brand song

i am bombs alone through the brain
make me joe

chain in your ears
let ya

i can feel you fine songs bread UNK cream liar split michael lonely while they time
dipping up childhood if u share UNK me

but it is above it
see you

dash girls tummy ella bronx ol audio game floors lace storm awfully sprayed tracks undone
Metal years like your plague high rocks fallen onward oliver

slowly people surely raw legs dream freaks praising UNK
high sun UNK understands you do not enough

hey UNK
looking intended top cactus
let me make UNK dream

but no one those battlefield
i want flyer man we hate worm string close UNK itself repeat chains

baby save your rest UNK me
man phantom holes

Country take pride carnage gifts alabama roads end
meant bible shackles trip sucka direct trophies

milli tricks around packing nasty track unleash passionate ceremony ocean ei paws
daydream in season

hitch up you gave my frosty coast UNK shy correct this lies jose
on especially tonight

spider weights without april

Table 4: Qualitative results for the Pre-trained Only model with topic “Voyage”.

Style My Love
Hip-Hop gentle winter colder angel confusion turning shitty floor

seams feeling time always triste finish degree than love
i drive up UNK tattoos lifetime sho cold pole baby when dreaming waiting time that had time

here rocking red long
oh heh

Metal kiss my bitch that she has up guns children stepping on myself alone
i are asking it do not love you

sunny baby up miracle hand do not
some diamonds do not know it

my sweet time UNK me
verse flirting da checks insane knife conceive i laugh words

holds till least presence time so testify obey friend fist
Country baby if i can not reasons betrayed away easy awhile autumn torch

cling UNK biscuits
rabbit UNK

yea girl baby is ready when can be myself cocky UNK man
leaving me buddy

why do not wap dizzy mall queen nickels game minute brains confusing top tonight

Table 5: Qualitative results for the Pre-trained Only model with topic “My Love”.



On the other hand, according to Tab. 2, the GAN Pre-
train model, which is supposed to be the best model,
achieves similar scores with the Random Weights model.
It is hard to find a good set of hyper-parameters for this
model.

7.2 Future Work
For future work, we can try tuning the hyper-parameters
of the model to improve the result. From our experiments,
we find that it is easy for the discriminator to distinguish
generated lyrics from real ones. We can train the gen-
erator for more iterations after update the weights of the
encoder and the discriminator one time. Besides, more
time is needed for training the models.

Text generation is still a challenge task in the natu-
ral language processing area. There are other adversar-
ial learning methods using reinforcement learning, such
as SeqGAN (Yu et al., 2017) and LeakGAN (Guo et al.,
2017), to tackle this task. New structures need to be pro-
posed and improved for the text generation task.

Appendix
The link to the source code is https://github.
com/peterfengyx/Lyric-Generation;
and the link to the original corpus is
https://www.kaggle.com/gyani95/
380000-lyrics-from-metrolyrics.
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